Lecture 4: Complex Numbers
Functions, and Data Input

Dr. Mohammed Hawa
Electrical Engineering Department
University of Jordan

EE201: Computer Applications. See Textbook Chapter 3

What is a Function?

A MATLAB Function (e.g. y = func(xl, x2))
is like a script file, but with inputs and outputs
provided automatically in the commend window.

In MATLAB, functions can take zero, one, two or
more inputs, and can provide zero, one, two or
more outputs.

There are built-in functions (written by the
MATLAB team) and functions that you can define
(written by you and stored in .m file).

Functions can be called from command line, from
wihtin a script, or from another function.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

2

2/7/2015

Table 3.1-1 Some common mathematical functions

Exponential
exp (x)
sgrt (x)
Logarithmic
log (x)
1logl0 (x)

Complex
abs (x)
angle (
conj (x
imag (x
real (x

x)
)
)
)

Numeric
ceil (x)
Fi% (x)
floor (x)
round (x)
sign (x)

Exponential; e".
Square root; Vx.

Natural logarithm; In x.
Common (base-10) logarithm; log x = log;o Xx.

Absolute value; x.

Angle of a complex number x.
Complex conjugate.

Imaginary part of a complex number x.
Real part of a complex number x.

Round to the nearest integer toward 00,
Round to the nearest integer toward zero.
Round to the nearest integer toward —00.
Round toward the nearest integer.

Signum function:

+1ifx>0;0ifx=0; —1ifx <O.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 3
Functions are Helpful
* Enable “divide and conquer” strategy
— Programming task broken into smaller tasks
* Code reuse
— Same function useful for many problems
* Easier to debug
— Check right outputs returned for all possible
Inputs
« Hide implementation
— Only interaction via inputs/outputs, how it is
done (implementation) hidden inside the
function.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 4

2/7/2015

2/7/2015

Finding Useful Functions

* You can use the 1ookfor command to find
MATLAB functions that are relevant to your
application.

Example: >> lookfor imaginary

Gets a list of functions that deal with
imaginary numbers.

e i — Imaginary unit.

* — Imaginary unit.

* complex - Construct complex result
from real and imaginary parts.

* imag — Complex imaginary part.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 5

Calling Functions

Function names are case sensitive (meshgrid,
meshGrid and MESHGRID are interpreted as
different functions).

Inputs (called function arguments or function
parameters) can be either numbers or
variables.

Inputs are passed into the function inside of
parentheses () separated by commas.

We usually assign the output to variable(s) so
we can use it later. Otherwise it is assigned to
the built-in variable ans.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 6

Rules

e To evaluate sin 2 in
MATLAB, we type
sin(2),notsin[2]

 For example
sin[x(2)] gives an
error even if x is
defined as an array.

* Inputs to functions in
MATLAB can be
sometimes arrays.

Copyright © Dr. Mohammed Hawa

>> x = =3 + 4i;
>> mag_x = abs(x)
mag_x =

5

>> mag_y = abs(6 - 81i)

mag_y =
10

>> angle_x = angle(x)
angle_x =

2.2143

>> angle (x)

ans =
2.2143

>> x = [5,7,15]

x =

5 7 15

>> y = sqgrt(x)

2.2361 2.6458

3.8730

Electrical Engineering Department, University of Jordan

Function Composition

« Composition: Using a function as an
argument of another function

* Allowed in MATLAB.

* Just check the number and placement of

parentheses when typing such

expressions.
* sin(sgrt (x)+1)

* log(x.”"2 4+ sin(5))

Copyright © Dr. Mohammed Hawa

Electrical Engineering Department, University of Jordan

2/7/2015

Which expression is correct?

* You want to find sin?(x). What do you write?

* (sin(x))"2
* sin”2(x)

* sin”2x

* sin(x"2)

* sin(x) "2

* Solution: Only first and last expressions are

correct.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 9
Tt1 tric Functi
Trigonometric*
cos (x) Cosine; cos x.
cot (x) Cotangent; cot x.
cso(x) Cosecant; ¢sc X.
sec (x) Secant; sec x.
sin (x) Sine; sin x.
tan (x) Tangent: tan x.
Inverse trigonometric’
acos (x) Inverse cosine; arccos x = cos” ' x.
acot (x) Inverse cotangent; arccot X = cot ' X.
acsc (x) Inverse cosecant; arccsc X = csc™ ! x.
asec (x) Inverse secant; arcsec X = sec | x.
asin(x) Inverse sine; arcsin x = sin™! x.
atan (x) Inverse tangent; arctan x = tan~ ' x.
atan2 (y, x) Four-quadrant inverse tangent.
*These functions accept v in radians.
"These functions return a value in radians.
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 10

2/7/2015

Hyperbolic functions

Hyperbolic

cosh (x) Hyperbolic cosine; cosh x = (e* + ¢7)/2.
coth (x) Hyperbolic cotangent; cosh x/sinh x.
csch (x) Hyperbolic cosecant; 1/sinh x.

sech (x) Hyperbolic secant; 1/cosh x.

sinh (x) Hyperbolic sine; sinhx = (e¢* — ¢7)/2.
tanh (x) Hyperbolic tangent: sinh x/cosh x.

acosh Inverse hyperbolic cosine
acoth Inverse hyperbolic cotangent

Inverse hyperbolic secant
Inverse hyperbolic sine

(x)
(%)
acsch (x) Inverse hyperbolic cosecant
(x)
(x)
(x) Inverse hyperbolic tangent

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

11

User-Defined Functions

* Functions must be saved to a file with .m extension.

 Filename (without the .m) must match EXACTLY
the function name.

+ First line in the file must begin with a function
definition line that illustrates inputs and outputs.

function [output variables] = name (input variables)

* This line distinguishes a function M-file from a
script M-file.

* Output variables are enclosed in square brackets.
* Input variables must be enclosed with parentheses.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

12

2/7/2015

Functions Names

+ Function names may only use
alphanumeric characters and the
underscore.

* Functions names should NOT:

— include spaces
— start with a number
— use the same name as an existing command

* Consider adding a header comment, just
under the function definition (for help).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 13

Exercise: Your Own pol2cart

« Make sure you set you Current Folder to
Desktop (or where you saved the .m file).

" Editor - D:\EE 201 Computer Applications\Book Chapters\Lecture4 Scripts and Functions\polar_to_cartesian.m

File Edit Tet Go Cell Tools Debug Desktop Window Help
NDEH | $RR90C | S2D- A kl-2KB0E BB | st
BB -0 [+ | +11 | x|H% O

function [x, y] = polar_to_cartesian(r, theta)

- ransiorm polar TO cartesian coordinates

% Author: Dr. Mohammed Hawa

»
YW M ey W N
0

X =r ,* cos(theta); % why did use not
Yy =r .* sin(theta); % why the semicolon
o= return;
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 14

2/7/2015

Test your newly defined function

>> [a, b] = polar_to_cartesian(3, pi)
a =

-3
b =

3.6739%9e-016

>> polar_to_cartesian(3, pi)

ans =
-3
>> [a, b] = polar_to_cartesian (3, pi/4)
a =
2.1213
b =
2.1213

>> [a, b] = polar_to_cartesian([3 3 3], [pi pi/4 pi/2])

a =
-3.0000 2.1213 0.0000
b =
0.0000 2.1213 3.0000
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 15
>> help pol2cart
POL2CART Transform polar to Cartesian coordinates.
[X,Y] = POL2CART(TH,R) transforms corresponding elements of data
stored in polar coordinates (angle TH, radius R) to Cartesian
coordinates X,Y. The arrays TH and R must the same size (or
either can be scalar). TH must be in radians.
[X,Y,Z2] = POL2CART(TH,R,Z) transforms corresponding elements of
data stored in cylindrical coordinates (angle TH, radius R, height
Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be
the same size (or any of them can be scalar). TH must be in radians.
“)
Class support for inputs TH,R,Z: ¥
float: double, single
See also cart2sph, cart2pol, sph2cart. r g
, : |y =rcosf)
Reference page in Help browser i
doc pol2cart b % ¢
P A x=rcosf
a
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 16

2/7/2015

2/7/2015

Just like your code!

>> type pol2cart

function [x,y,z] = pol2cart(th,r,z)

$POL2CART Transform polar to Cartesian coordinates.

[X,Y] = POL2CART(TH,R) transforms corresponding elements of data
stored in polar coordinates (angle TH, radius R) to Cartesian

o0

o

% coordinates X,Y. The arrays TH and R must the same size (or

% either can be scalar). TH must be in radians.

%

% [X,Y,Z2] = POL2CART(TH,R,Z) transforms corresponding elements of

o0

data stored in cylindrical coordinates (angle TH, radius R, height
7Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be
the same size (or any of them can be scalar). TH must be in radians.

90 oo o

o

Class support for inputs TH,R,Z:
float: double, single

e oo

o

See also CART2SPH, CART2POL, SPH2CART.

o0

L. Shure, 4-20-92.
Copyright 1984-2004 The MathWorks, Inc.
SRevision: 5.9.4.2 $ S$Date: 2004/07/05 17:02:08 $

o0

o0

r.*cos (th);
y = r.*sin(th);

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 17

Exercise; Spiral

>> r = linspace(0, 10, 20);
>> theta = linspace (0, 2*pi, 20);
>> [x, y] = polar_to_cartesian(r, theta);

>> plot(x,v);

B
-6 4 2 o 2 4 g =l 10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 18

Possible Cases

* One input:

function [0l, 02, 03] = myfunc(il)
* Three inputs:

function [o0l, 02, 03] = myfunc(il, 12, 1i3)
* No inputs:

function [0l, 02, 03] = myfunc/()
function [0l, 02, 03] = myfunc

* One output:

function [0l] = myfunc(il, i2, 1i3)
function ol = myfunc(il, i2, i3)

* No output:

function [] = myfunc(il, i2, i3)

function myfunc(il, i2, 1i3)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 19

Local Variables

function z = fun(x,y)

u = 3*x;
z = u + 6*y."2;

o\

return missing is fine at end of file

» The variables x, y, u, z are local to the function
fun, so their values will not be available in the
workspace outside the function.

* See example below.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 20

2/7/2015

10

Example

>> u

>> z

>> x = 3;
>> b = 7;
>> g = fun(x, b);
>> X
x =
3
>> y
??? Undefined function or variable 'y'.

??? Undefined function or variable 'u'.

??? Undefined function or variable 'z

>> g
q =
303
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 21
Exerci
function show_date
clear
clc
date
% how many inputs and outputs do we have?
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 22

2/7/2015

11

Homework

function [dist, vel] = drop(vO, t)
Compute the distance travelled and the
velocity of a dropped object, from

the initial wvelocity vO, and time t
Author: Dr. Mohammed Hawa

o 0P oo

o\

g = 9.80665; % gravitational acceleration (m/s"2)
vel = g*t + vO;
dist = 0.5*g*t.”"2 + vO*t;

>> t = 0:0.1:5;
>> [distance_dropped, velocity] = drop (10, t);
>> plot (t, velocity)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 23

Local vs. Global Variables

 The variables inside a function are local. Their scope is
only inside the function that declares them.

* In other words, functions create their own workspaces.

 Function inputs are also created in this workspace
when the function starts.

* Functions do not know about any variables in any
other workspace.

+ Function out]%uts are copied from the function
workspace when the function ends.

+ Function workspaces are destroyed after the function
ends.

— Any variables created inside the function “disappear”
when the function ends.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 24

2/7/2015

12

Local vs, Global Variables

* You can, however, define global variables
if you want using the global keyword.

e Syntax: global a x g

* Global variables are available to the basic
workspace and to other functions that
declare those variables global (allowing
assignment to those variables from
multiple functions).

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 25

Subfunctions

* An M-file may contain more than one user-defined function.

* The first defined function in the file is called the primary
function, whose name is the same as the M-file name.

+ All other functions in the file are called subfunctions. They can
serve as subroutines to the primary function.

* Subfunctions are normally “visible” only to the primary
function and other subfunctions in the same file; that is, they
normally cannot be called by programs or functions outside
the file.

* However, this limitation can be removed with the use of
function handles.

* We normally use the same name for the primary function and
its file, but it the function name differs from the file name, you
must use the file name to invoke the function.

)

opyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 26

2/7/2015

13

Exercise

* The following example shows how the MATLAB
M-function mean can be superceded by our own
definition of the mean, one which gives the root-
mean square value.

function y = subfun_demo(a)
y = a — meanf(a);
function w = mean(x)

w = sqgrt(sum(x.”2))/length(x);

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 27

Example

* A sample session follows.

>>y = subfn_demo([4 -4])
y:
1.1716 -6.8284

* If we had used the MATLAB M-function mean, we would
have obtained a different answer; that is,

>>a = [4 -4];
>>b = a - mean(a)
b =

4 -4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 28

2/7/2015

14

Function Handles

* You can create a function handle to any function by
using the @ sign before the function name.

* You can then use the handle to reference the function.

function y = f1(x)
y = X + 2%exp(-x) - 3;

* You can pass the function as an argument to another
function using the handle. Example: fzero function
finds the zero of a function of a single variable x.

* >> x0 = 3; % initial guess
* >> fzero(@fl, x0)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 29

Handle ys. Return Value

t = -1:0.1:5;
plot(t, £1(t)); =
ol
. 150
* There is a zero
1k
near x = —0.5
0.5F
and one
0
near x = 3.
-0.5F
AL
1.5 :
-1 0 1 2 3 4 5
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 30

2/7/2015

15

Exercise

fzero(@function, x0)

* where @function
is the function
handle, and x0 is
a user-supplied
initial guess for
the zero.

Copyright © Dr. Mohammed Hawa

>> fzero(Q@fl, -0.5)
ans =
-0.5831

>> fzero(Qfl, 3)
ans =
2.8887

>> fzero(@sin, 0.1)
ans =
6.6014e-017

>> fzero(@cos, 2)
ans =

1.5708
>> pi/2
ans =
1.5708
Electrical Engineering Department, University of Jordan 31

Finding the Minimum

* The fminbnd function finds the minimum of a
function of a single variable x in the interval
x1 <x<x2.

* fminbnd(@function, x1, x2)
e fminbnd (Qcos, 0, 4) returns3.1416

* function y = f2(x)
e v = 1-x.%*exp(-x);

* X fminbnd (Rf2, 0, 5) returnsx=1
* How would I find the min value of f2? (i.e. 0.6321)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

32

2/7/2015

16

Exercise

* For the function:
e y = 0.025x> — 0.0625x* — 0.333x3 + x?2

* Find the minimum in

the intervals: T
. x€[-1,4] i
e x €]1,4] 2
. x €[2,4]]
x€[-1

. ,1] |\\\

=1 -0.5 0 05 1 15 2 25 3 35 4
x

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 33

Old vs, New

* New syntax for function handles:
fzero(@fl, -0.5)

* Older syntax for function handles :
fzero('fl', -0.5)

* The new syntax is preferred, though both
will work just fine.

* Which one gives the correct answer:
fzero('sin', 3)or fzero(@sin, 3)

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 34

2/7/2015

17

The fminsearch function

¢ fminsearch finds minimum of a function of more than one variable.

* To find where the minimum of f = xe~(¥*+y 2), define it in an M-file,
using the vector x whose elements are x(1) = x and x(2) = y.

function £ = f4(x)

f = x(1).%*exp(-x(1).%2-x(2)

.N2);

* Suppose we guess that the minimum is nearx =0,y = 0.

>>fminsearch (Qf4, [0,0])
ans =

-0.7071 0.000

¢ Thus the minimum occurs at x

Copyright © Dr. Mohammed Hawa

—0.7071,y = 0.

Electrical Engineering Department, University of Jordan

35

Inline Function

* No need to save the
function in an M-file.

» Useful for small size

functions defined on
the fly.

* You can use a string
array to define the
function.

* Anonymous functions
are similar (see next).

Copyright © Dr. Mohammed Hawa

>> f4 = inline('x."2-4"
f4 =
Inline function:
f4(x) = x.72-4

>> [x, value] = fzero(f4, 0)

>> f5 = inline(f5str)
£f5 =
Inline function:
f5(x) = x.72-4

>> x = fzero(f5, 3)
2

>> x = fzero('x."2-4', 3)
2

>> f6 = inline('x.*y")

f6 =

Inline function:
f6(x,y) = x.*y

>> f5str = 'x.72-4'; % string array

Electrical Engineering Department, University of Jordan

36

2/7/2015

18

Anonymous functions

+ Here is a simple function called sq to calculate
the square of a number.

>> sq = @(x) x.72;

>> sq = @(x) (x.72)
sq =
Q(x) (x.72)

>> sq([5 7])
ans =
25 49

>> fminbnd(sqg, -10, 10)
ans =
0

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 37

Exercise

>> sqgrtsum = @(x,y) sqgrt(x.”2 + y."2);

>> sqgrtsum(3, 4)
ans =
5
>> A = 6; B = 4;
>> plane = @(x,y) A*x + B*y;

>> z = plane(2,8)

7 =
44
>> f = @(x) x."3; % try by hand!
>> g = @(x) 5*sin(x);
>> h = @(x) g(f(x));
>> h(2)
ans =
4.9468
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 38

2/7/2015

19

Variables in Anonymous Functions

* When the function is created MATLAB, it
captures the values of these variables and
retains those values for the lifetime of the
function handle. If the values of A or B are
changed after the handle is created, their
values associated with the handle do not
change.

* This feature has both advantages and
disadvantages, so you must keep it in mind.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 39

For Speed Use Handles

* The function handle provides speed
improvements.

» Another advantage of using a function
handle is that it provides access to
subfunctions, which are normally not
visible outside of their defining M-file.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 40

2/7/2015

20

Importing Data: ASCII

] ascii.txt - Notepad

* Make the ‘data’ folder your

Current FOlder | File Edit Format View Help

* Delimited ASCII files are :5L 'g i ; ’ g
common to save data from 9,10,11,12

experiments.
* dlmread/dlmwrite

>> a = dlmread('ascii.txt"')

a =
1 2 3 4
5 6 7 8
9 10 11 12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 41
Importing Data: Excel
(®E 9 -
+ Make the “data’ folder your o EAERCR R e
Current Folder. B o cator JuJa
Paste - - - A~
* MATLAB can also read and W Aol Rt M
write to Excel Files. “m . E 0
: A B c | b E
* xlsread/xlswrite o
2: 15 20 25 30
3 30 31 32 33
>> a = xlsread('data.xls') |4 o m— (- —
a = 6
7
10 30 50 60
15 20 25 30
30 31 32 33
80 82 84 86
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 42

2/7/2015

21

Importing Data: Images

» Make the ‘data’ folder your
Current Folder.

* Read and write images:

* imread/imwrite

>> ¢ = imread('cat.jpg');
>> imshow(c) ;
>3

(¢

>> imshow (255-c); % inverse

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

43

Importing Data: Sound Files

% use a script file (fourier.m)
[v,Fs,bits] = wavread('bequiet');
N = length(y);

t = (1/Fs)*(1:N);

plot(t, vy);
xlabel ('Time (s)');
ylabel ('Amplitude');

f = Fs*(-N/2:N/2-1)/N;
y_fft = fftshift(abs(fft(y)));

figure;

plot (£, y_£fft);

xlabel ('Frequency (Hz)');
ylabel ('Amplitude');

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

44

2/7/2015

22

bequiet.way (BW of human yoice!)

100 1
9 9
3 3
2 2
= =
£ £
< <

50 1

4 o
0 02 0.4 06 0.8 1 12 14 -6000 -4000 2000 [} 2000 4000 6000
Time (s) Frequency (Hz)
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 45
. 1 y
(
-

] 1800 q

1 1600 1

1400]

1200 1
g 3
3 i 3

£ £ 1000 1
£ 1 g

800 1

1 600 1

i 400 9

1 200 1

4 | m.“l\‘ nah J\L‘LM |
o 05 1t 15 2 25 3 35 4 45 25 =2 45 4 05 0 05 1 15 2 25
Time (s) Frequency (Hz) X 10
Electrical Engineering Department, University of Jordan 46

Copyright © Dr. Mohammed Hawa

2/7/2015

23

tuningA4.way (frequency?)

] 4000]
3500 i
3000 i
E 1 8 2500 1
< - 4 < 2000 4
1500 4
1000 4
1 500 4
Ey
o 1 2 3 4 5 9 15 1 05 o 05 1 15
Time (s) Frequency (Hz) 10!
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 47
M Nate Frequency Perind
i Keyhoard que i
AD 27.500 5636
he B0 S0Ees 29.135 | mpap 432
byl o1 32703 3055
2 23 D1 Gernn 34648 | 3754 2886
35 27 EL 41203 38891 | 2437 2571
29 FL 43550 5251
5 0 @1 sgoo0 45249 | 3pal 2162
a3 2 Al Ssoon 51913 | 151z 1926
a5 Bl F1735 58270 | 1ghn 1716
E c2 65406 1558
38 31 D2 73416 69296 | 13 1429
w ¥ E2 gzant TR | 1 1286
M) P 7307 1145
5 8 <) o7gop 92439 | 1nop 1081
PR A2 liooo 10383 | a3y 9631
a7 B2 1347 11634 | goes 8381
Frequenc e el Gom
= 5w D3 1653 13839 | gg1) 7216
= 1555 | gogs 6428 .
—__ o500 | 30y S405 .
= 510
- 20763 | 4545 4816
23505 | 4050 4290
= 3822
= 27708 | Bans 3608
A0S 31015 | zoap 3214
= 2863
Hz = a9 | f55] 2.703
‘= 10530 | 5373 2408
= 46616 | 7ozs 2.145
._: 1910
. 55457 | 1908 1804
= 52225 | 1413 lé07
= 1332
= 13999 | 1375 1351
= s3061 | 113 1204
93235 | [0l L073
= 09556
i 1087 | ga513 09020
= 12445 | 7554 08034
07159
14800 | ggae 06757
16612 | poges 06020
18647 | papes 05363
04778
22175 | 257 04310
24880 | g37en 04018
! 03580
W 29600 | p3lEe 03578
105 s 35200 33224 [p2ga) 03010
w | B E‘ 511 37293 | nzss) 02681
108 (o) T Wolle THSW] 4136.0 02365
Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 48

2/7/2015

24

gultar.way

1600

1400

1200

1000

Amplitude
Amplitude

3
g 8
8 8

5
15
8

N
5]
8

o L L L L ul "
0 0.5 1 1.5 2 25 2.5 2 -1.5 -1 0.5 0 0.5 1 15 2 25
Time (s) Frequency (Hz) x10°

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 49

Homework

* Solve as many problems from Chapter 3
as you can

* Suggested problems:
« 3.1,3.3,3.6,3.9,3.14, 3.18,3.24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 50

2/7/2015

25

