
2/7/2015

1

Lecture 4: Complex Numbers
Functions, and Data Input

Dr. Mohammed Hawa
Electrical Engineering Department

University of Jordan

EE201: Computer Applications. See Textbook Chapter 3.

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

What is a Function?

• A MATLAB Function (e.g. y = func(x1, x2))
is like a script file, but with inputs and outputs
provided automatically in the commend window.

• In MATLAB, functions can take zero, one, two or
more inputs, and can provide zero, one, two or
more outputs.

• There are built-in functions (written by the
MATLAB team) and functions that you can define
(written by you and stored in .m file).

• Functions can be called from command line, from
wihtin a script, or from another function.

2

2/7/2015

2

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Functions are Helpful

• Enable “divide and conquer” strategy
– Programming task broken into smaller tasks

• Code reuse
– Same function useful for many problems

• Easier to debug
– Check right outputs returned for all possible

inputs

• Hide implementation
– Only interaction via inputs/outputs, how it is

done (implementation) hidden inside the
function.

4

2/7/2015

3

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Finding Useful Functions

• You can use the lookfor command to find
MATLAB functions that are relevant to your
application.

• Example: >> lookfor imaginary

• Gets a list of functions that deal with
imaginary numbers.

• i - Imaginary unit.

• j - Imaginary unit.

• complex - Construct complex result
from real and imaginary parts.

• imag - Complex imaginary part.

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Calling Functions

• Function names are case sensitive (meshgrid,
meshGrid and MESHGRID are interpreted as
different functions).

• Inputs (called function arguments or function
parameters) can be either numbers or
variables.

• Inputs are passed into the function inside of
parentheses () separated by commas.

• We usually assign the output to variable(s) so
we can use it later. Otherwise it is assigned to
the built-in variable ans.

6

2/7/2015

4

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Rules

• To evaluate sin 2 in
MATLAB, we type
sin(2), not sin[2]

• For example
sin[x(2)] gives an
error even if x is
defined as an array.

• Inputs to functions in
MATLAB can be
sometimes arrays.

>> x = -3 + 4i;

>> mag_x = abs(x)

mag_x =

 5

>> mag_y = abs(6 - 8i)

mag_y =

 10

>> angle_x = angle(x)

angle_x =

 2.2143

>> angle(x)

ans =

 2.2143

>> x = [5,7,15]

x =

 5 7 15

>> y = sqrt(x)

y =

 2.2361 2.6458 3.8730

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Function Composition

• Composition: Using a function as an
argument of another function

• Allowed in MATLAB.

• Just check the number and placement of
parentheses when typing such
expressions.

• sin(sqrt(x)+1)

• log(x.^2 + sin(5))

8

2/7/2015

5

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Which expression is correct?

• You want to find sin� � . What do you write?

• (sin(x))^2

• sin^2(x)

• sin^2x

• sin(x^2)

• sin(x)^2

• Solution: Only first and last expressions are
correct.

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Trigonometric Functions

10

2/7/2015

6

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Hyperbolic functions

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

User-Defined Functions

• Functions must be saved to a file with .m extension.
• Filename (without the .m) must match EXACTLY

the function name.
• First line in the file must begin with a function

definition line that illustrates inputs and outputs.

function [output variables] = name(input variables)

• This line distinguishes a function M-file from a
script M-file.

• Output variables are enclosed in square brackets.
• Input variables must be enclosed with parentheses.

12

2/7/2015

7

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Functions Names

• Function names may only use
alphanumeric characters and the
underscore.

• Functions names should NOT:
– include spaces

– start with a number

– use the same name as an existing command

• Consider adding a header comment, just
under the function definition (for help).

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Your Own pol2cart

• Make sure you set you Current Folder to
Desktop (or where you saved the .m file).

14

2/7/2015

8

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Test your newly defined function

>> [a, b] = polar_to_cartesian(3, pi)

a =

 -3

b =

 3.6739e-016

>> polar_to_cartesian(3, pi)

ans =

 -3

>> [a, b] = polar_to_cartesian(3, pi/4)

a =

 2.1213

b =

 2.1213

>> [a, b] = polar_to_cartesian([3 3 3], [pi pi/4 pi/2])

a =

 -3.0000 2.1213 0.0000

b =

 0.0000 2.1213 3.0000

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

MATLAB has pol2cart
>> help pol2cart

 POL2CART Transform polar to Cartesian coordinates.

 [X,Y] = POL2CART(TH,R) transforms corresponding elements of data

 stored in polar coordinates (angle TH, radius R) to Cartesian

 coordinates X,Y. The arrays TH and R must the same size (or

 either can be scalar). TH must be in radians.

 [X,Y,Z] = POL2CART(TH,R,Z) transforms corresponding elements of

 data stored in cylindrical coordinates (angle TH, radius R, height

 Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be

 the same size (or any of them can be scalar). TH must be in radians.

 Class support for inputs TH,R,Z:

 float: double, single

 See also cart2sph, cart2pol, sph2cart.

 Reference page in Help browser

 doc pol2cart

16

2/7/2015

9

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Just like your code!
>> type pol2cart

function [x,y,z] = pol2cart(th,r,z)

%POL2CART Transform polar to Cartesian coordinates.

% [X,Y] = POL2CART(TH,R) transforms corresponding elements of data

% stored in polar coordinates (angle TH, radius R) to Cartesian

% coordinates X,Y. The arrays TH and R must the same size (or

% either can be scalar). TH must be in radians.

%

% [X,Y,Z] = POL2CART(TH,R,Z) transforms corresponding elements of

% data stored in cylindrical coordinates (angle TH, radius R, height

% Z) to Cartesian coordinates X,Y,Z. The arrays TH, R, and Z must be

% the same size (or any of them can be scalar). TH must be in radians.

%

% Class support for inputs TH,R,Z:

% float: double, single

%

% See also CART2SPH, CART2POL, SPH2CART.

% L. Shure, 4-20-92.

% Copyright 1984-2004 The MathWorks, Inc.

% $Revision: 5.9.4.2 $ $Date: 2004/07/05 17:02:08 $

x = r.*cos(th);

y = r.*sin(th);

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise: Spiral
>> r = linspace(0, 10, 20);

>> theta = linspace(0, 2*pi, 20);

>> [x, y] = polar_to_cartesian(r, theta);

>> plot(x,y);

18

2/7/2015

10

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Possible Cases
• One input:
function [o1, o2, o3] = myfunc(i1)

• Three inputs:
function [o1, o2, o3] = myfunc(i1, i2, i3)

• No inputs:
function [o1, o2, o3] = myfunc()

function [o1, o2, o3] = myfunc

• One output:
function [o1] = myfunc(i1, i2, i3)

function o1 = myfunc(i1, i2, i3)

• No output:
function [] = myfunc(i1, i2, i3)

function myfunc(i1, i2, i3)

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Local Variables

• The variables x, y, u, z are local to the function
fun, so their values will not be available in the
workspace outside the function.

• See example below.

function z = fun(x,y)

u = 3*x;

z = u + 6*y.^2;

% return missing is fine at end of file

20

2/7/2015

11

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example
>> x = 3;

>> b = 7;

>> q = fun(x, b);

>> x

x =

 3

>> y

??? Undefined function or variable 'y'.

>> u

??? Undefined function or variable 'u'.

>> z

??? Undefined function or variable 'z'.

>> q

q =

 303

 21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

function show_date

clear

clc

date

% how many inputs and outputs do we have?

22

2/7/2015

12

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

function [dist, vel] = drop(vO, t)
% Compute the distance travelled and the
% velocity of a dropped object, from
% the initial velocity vO, and time t
% Author: Dr. Mohammed Hawa

g = 9.80665; % gravitational acceleration (m/s^2)
vel = g*t + vO;
dist = 0.5*g*t.^2 + vO*t;

>> t = 0:0.1:5;

>> [distance_dropped, velocity] = drop(10, t);

>> plot(t, velocity)

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Local vs. Global Variables

• The variables inside a function are local. Their scope is
only inside the function that declares them.

• In other words, functions create their own workspaces.
• Function inputs are also created in this workspace

when the function starts.
• Functions do not know about any variables in any

other workspace.
• Function outputs are copied from the function

workspace when the function ends.
• Function workspaces are destroyed after the function

ends.
– Any variables created inside the function “disappear”

when the function ends.

24

2/7/2015

13

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Local vs. Global Variables

• You can, however, define global variables
if you want using the global keyword.

• Syntax: global a x q

• Global variables are available to the basic
workspace and to other functions that
declare those variables global (allowing
assignment to those variables from
multiple functions).

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Subfunctions

• An M-file may contain more than one user-defined function.
• The first defined function in the file is called the primary

function, whose name is the same as the M-file name.
• All other functions in the file are called subfunctions. They can

serve as subroutines to the primary function.
• Subfunctions are normally “visible” only to the primary

function and other subfunctions in the same file; that is, they
normally cannot be called by programs or functions outside
the file.

• However, this limitation can be removed with the use of
function handles.

• We normally use the same name for the primary function and
its file, but if the function name differs from the file name, you
must use the file name to invoke the function.

26

2/7/2015

14

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

• The following example shows how the MATLAB
M-function mean can be superceded by our own
definition of the mean, one which gives the root-
mean square value.

function y = subfun_demo(a)

y = a - mean(a);

function w = mean(x)

w = sqrt(sum(x.^2))/length(x);

27

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Example

• A sample session follows.

>>y = subfn_demo([4 -4])

y =

1.1716 -6.8284

• If we had used the MATLAB M-function mean, we would
have obtained a different answer; that is,

>>a = [4 -4];

>>b = a - mean(a)

b =

4 -4

28

2/7/2015

15

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Function Handles

• You can create a function handle to any function by
using the @ sign before the function name.

• You can then use the handle to reference the function.

function y = f1(x)

y = x + 2*exp(-x) - 3;

• You can pass the function as an argument to another
function using the handle. Example: fzero function
finds the zero of a function of a single variable x.

• >> x0 = 3; % initial guess

• >> fzero(@f1, x0)

29

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Handle vs. Return Value

t = -1:0.1:5;

plot(t, f1(t));

• There is a zero
near �	 � 	�0.5	

and one
near �	 � 	3.

-1 0 1 2 3 4 5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

30

2/7/2015

16

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

fzero(@function,x0)

• where @function
is the function
handle, and x0 is
a user-supplied
initial guess for
the zero.

>> fzero(@f1, -0.5)

ans =

 -0.5831

>> fzero(@f1, 3)

ans =

 2.8887

>> fzero(@sin, 0.1)

ans =

 6.6014e-017

>> fzero(@cos, 2)

ans =

 1.5708

>> pi/2

ans =

 1.5708

31

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Finding the Minimum

• The fminbnd function finds the minimum of a
function of a single variable x in the interval
x1 ≤ x ≤ x2.

• fminbnd(@function, x1, x2)

• fminbnd(@cos, 0, 4) returns 3.1416

• function y = f2(x)

• y = 1-x.*exp(-x);

• x = fminbnd(@f2, 0, 5) returns x = 1
• How would I find the min value of f2? (i.e. 0.6321)

32

2/7/2015

17

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise

• For the function:

• 		 � 	0.025�� 	� 	0.0625�� 	� 	0.333�� 	� 	��

• Find the minimum in
the intervals:

• � ∈ �1, 4

• � ∈ 1, 4

• � ∈ 2, 4

• � ∈ �1, 1

33

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Old vs. New

• New syntax for function handles:

fzero(@f1, -0.5)

• Older syntax for function handles :

fzero('f1', -0.5)

• The new syntax is preferred, though both
will work just fine.

• Which one gives the correct answer:
fzero('sin', 3)or fzero(@sin, 3)

34

2/7/2015

18

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

The fminsearch function

• fminsearch finds minimum of a function of more than one variable.

• To find where the minimum of � � ��� ����� , define it in an M-file,
using the vector x whose elements are x(1) = x and x(2) = y.

function f = f4(x)

f = x(1).*exp(-x(1).^2-x(2).^2);

• Suppose we guess that the minimum is near �	 � 0, �	 � 	0.

>>fminsearch(@f4,[0,0])

ans =

-0.7071 0.000

• Thus the minimum occurs at �	 � 		0.7071, �	 � 	0.

35

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Inline Function

• No need to save the
function in an M-file.

• Useful for small size
functions defined on
the fly.

• You can use a string
array to define the
function.

• Anonymous functions
are similar (see next).

>> f4 = inline('x.^2-4')

f4 =

 Inline function:

 f4(x) = x.^2-4

>> [x, value] = fzero(f4, 0)

x =

 -2

value =

 0

>> f5str = 'x.^2-4'; % string array

>> f5 = inline(f5str)

f5 =

 Inline function:

 f5(x) = x.^2-4

>> x = fzero(f5, 3)

x =

 2

>> x = fzero('x.^2-4', 3)

x =

 2

>> f6 = inline('x.*y')

f6 =

 Inline function:

 f6(x,y) = x.*y

36

2/7/2015

19

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Anonymous functions

• Here is a simple function called sq to calculate
the square of a number.

>> sq = @(x) x.^2;

>> sq = @(x) (x.^2)

sq =

 @(x)(x.^2)

>> sq([5 7])

ans =

 25 49

>> fminbnd(sq, -10, 10)

ans =

 0

37

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Exercise
>> sqrtsum = @(x,y) sqrt(x.^2 + y.^2);

>> sqrtsum(3, 4)

ans =

 5

>> A = 6; B = 4;

>> plane = @(x,y) A*x + B*y;

>> z = plane(2,8)

z =

 44

>> f = @(x) x.^3; % try by hand!

>> g = @(x) 5*sin(x);

>> h = @(x) g(f(x));

>> h(2)

ans =

 4.9468

38

2/7/2015

20

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Variables in Anonymous Functions

• When the function is created MATLAB, it
captures the values of these variables and
retains those values for the lifetime of the
function handle. If the values of A or B are
changed after the handle is created, their
values associated with the handle do not
change.

• This feature has both advantages and
disadvantages, so you must keep it in mind.

39

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

For Speed Use Handles

• The function handle provides speed
improvements.

• Another advantage of using a function
handle is that it provides access to
subfunctions, which are normally not
visible outside of their defining M-file.

40

2/7/2015

21

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Importing Data: ASCII

• Make the ‘data’ folder your
Current Folder.

• Delimited ASCII files are
common to save data from
experiments.

• dlmread/dlmwrite

>> a = dlmread('ascii.txt')

a =

1 2 3 4

5 6 7 8

9 10 11 12

41

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Importing Data: Excel

• Make the ‘data’ folder your
Current Folder.

• MATLAB can also read and
write to Excel Files.

• xlsread/xlswrite

>> a = xlsread('data.xls')

a =

10 30 50 60

15 20 25 30

30 31 32 33

80 82 84 86

42

2/7/2015

22

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Importing Data: Images

• Make the ‘data’ folder your
Current Folder.

• Read and write images:

• imread/imwrite

>> c = imread('cat.jpg');

>> imshow(c);

>>

>> imshow(255-c); % inverse

43

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Importing Data: Sound Files

% use a script file (fourier.m)

[y,Fs,bits] = wavread('bequiet');

N = length(y);

t = (1/Fs)*(1:N);

plot(t, y);

xlabel('Time (s)');

ylabel('Amplitude');

f = Fs*(-N/2:N/2-1)/N;

y_fft = fftshift(abs(fft(y)));

figure;

plot(f, y_fft);

xlabel('Frequency (Hz)');

ylabel('Amplitude');

44

2/7/2015

23

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

bequiet.wav (BW of human voice!)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

A
m

p
lit

u
d
e

-6000 -4000 -2000 0 2000 4000 6000
0

50

100

150

Frequency (Hz)

A
m

p
lit

u
d
e

45

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

triangle.wav

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

A
m

p
lit

u
d
e

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Frequency (Hz)

A
m

p
lit

u
d
e

46

2/7/2015

24

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

tuningA4.wav (frequency?)

0 1 2 3 4 5 6 7 8 9
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (s)

A
m

p
lit

u
d
e

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Frequency (Hz)

A
m

p
lit

u
d
e

47

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan 48

2/7/2015

25

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

guitar.wav

0 0.5 1 1.5 2 2.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Time (s)

A
m

p
lit

u
d
e

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

Frequency (Hz)

A
m

p
lit

u
d
e

49

Copyright © Dr. Mohammed Hawa Electrical Engineering Department, University of Jordan

Homework

• Solve as many problems from Chapter 3
as you can

• Suggested problems:

• 3.1, 3.3, 3.6, 3.9, 3.14, 3.18, 3.24

50

